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Abstract 

What you see depends on what you have seen before, and commonly your perception is drawn toward the 

past. Such attractive biases, known as serial dependence, are well established for many visual features. 

Interestingly, Chen and Bae (2024, Cognition) recently reported a repulsive serial bias in a pointing direction 

estimation task that switched to an attractive one in the presence of a distracting task. At the same time, an 

analysis of response trajectories revealed a repulsive bias during response execution, irrespective of the 

condition. These surprising findings prompted us to attempt a replication. We confirmed the main findings of 

Chen and Bae. However, we also demonstrated that the overall direction and magnitude of the bias are 

relatively stable for a given observer, regardless of the condition. Furthermore, we found that already the very 

first moment in the response trajectory differed between conditions, showing a predominantly attractive bias 

for trials that ended with attraction. The results confirm the robustness of the original findings and pose a 

challenge for a simple Bayesian model of serial dependence, highlighting the need for computational models 

that can explain both attractive and repulsive biases. 
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Between repulsion and attraction in serial biases: 

Replication of Chen & Bae, 2024 

Cognition is context-dependent. Whether estimating the colors of an object or deciding which bet to take, 

irrelevant contextual information strongly affects decisions. While textbooks describe many empirical 

demonstrations of such phenomena, their mechanisms remain elusive. For example, in perception and 

memory studies, estimates of stimulus features are often attracted to previously presented stimuli. This 

phenomenon, known as ‘serial dependence’ (Fischer & Whitney, 2014), has been demonstrated for a wide 

range of features, from orientation and color to emotional expressions (see reviews in Pascucci et al., 2023; 

Cicchini et al., 2024; Manassi et al., 2023; Manassi & Whitney, 2024). This effect has been explained by the 

Bayesian models as a tendency of the brain to integrate previous and current inputs under the assumption of 

a ‘stable world,’ which posits that objects tend to change little over time (Cicchini et al., 2018; Cicchini et al., 

2024; Kalm & Norris, 2018; van Bergen & Jehee, 2019). But is this a sufficient explanation? Here, we aim to 

replicate the findings of a recent study demonstrating opposite, repulsive biases, which raises questions 

about the applicability of Bayesian integration as a mechanism explaining serial biases. 

In a recent paper, Chen and Bae (2024a, Experiments 1A/1B) described a particularly striking set of findings. 

In each trial, participants had to remember the direction in which a teardrop-shaped stimulus was pointing. 

After a delay, they reported the direction by rotating another teardrop shape to match the stimulus. Several 

surprising findings emerged from this study. First, the authors found that responses were biased away from 

the direction of a stimulus in the previous trial. This finding contrasts with the ‘standard’ attractive serial 

dependence, although it aligns with results from other studies using the same or a similar paradigm (Bae & 

Luck, 2017, 2019; Bansal et al., 2023; Bliss et al., 2017; Chen & Bae, 2024b; Wang et al., 2024). They then 

demonstrated that this repulsion switches to attraction when an unrelated Stroop task (Stroop, 1935) is 

introduced during the delay period. They argued that this manipulation allows clarifying the role of working 

memory in serial biases: while most studies of serial dependence have a delay period before the report, the 

role of distraction during that period was not tested before. Finally, they analyzed the time course of the 

response, revealing that for most of the response execution period, observers were biased away from the 

previous stimulus. Only just before the decision was reported did this bias switch to attraction in the Stroop 

condition. This suggests that initially, the stimulus from the previous trial creates a repulsive influence that 

may switch to attraction later in the decision-making process. The combination of these three novel 

findings—the repulsive bias, its switch to an attractive one in the Stroop condition, and the time course of the 

bias—makes this study an enticing target for replication. 

If robust, these findings would present a challenge for any model aiming to explain why and how serial biases 

occur. This is especially true for the Bayesian model, which can accommodate only attractive, but not 

repulsive, biases. Other, more descriptive models, such as those attributing repulsive effects to memory 

about the stimuli and attractive ones to memory about responses (Pascucci et al., 2019), would also struggle 

to explain the shift from one bias direction to another. That being said, some models (Chetverikov, 2023a; 

Fritsche et al., 2020) may potentially account for this change in bias direction, and we will return to this 

question in the Discussion. 

In addition, Chen and Bae (2024a) reported that response times in the pointing direction estimation task 

decrease linearly as a function of the similarity between the current and the previous item. This effect, they 

argued, supports the idea that “the serial bias is driven by the decision during the reporting” (Chen & Bae, 

2024a, p. 2). While the debate about the processing stages that create serial dependence is not the focus of 

this paper (see Manassi & Whitney, 2023; Pascucci et al., 2023, for a discussion), the relationship between 

the response times and similarity is interesting from the theoretical point of view.  
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Here, we report a direct replication of Experiments 1A/1B by Chen & Bae (2024a) with a minor difference: we 

used a within-subject design instead of a between-subject design. Our main motivation for using within-

subject design was to ensure that the difference between the conditions cannot be explained by inter-

individual variability. Furthermore, within-subjects designs usually have higher power compared to between-

subject ones. In addition, this provided us with the opportunity to analyze the correlation between the biases 

across conditions, examining the role of individual difference more closely.  

To preview our findings, we successfully replicated the original study, demonstrating repulsive response 

trajectories that ended with an attractive bias when an extra Stroop task was introduced, but remained 

repulsive without it. However, we also show that these trajectories are likely to start with an attractive bias 

when they end with an attractive bias. In the Stroop condition, this leads to a positive starting bias on average, 

but this unexpected result must be treated with caution. Furthermore, biases appear to be stable across 

individuals, with most of the observers showing the same bias direction (attractive or repulsive) in both 

conditions. 

Methods 

The study followed the design of Experiment 1A/B in Chen & Bae (2024a). The only minor difference was that 

we employed a within-subject design instead of a between-subject one, so each participant went through a 

condition with a Stroop task and the one without it (Exp. 1A and 1B in the original paper, respectively) in a 

randomized order. 

Participants 

Thirty-seven participants took part in the study. The data collection was anonymous, and no personal data 

were recorded. Most of the participants were recruited from the student pool at the University of Bergen and 

took part in the study in exchange for course credits. The rest of the participants were recruited through word 

of mouth and compensated with a gift card at the rate of 200 NOK (approx. 17 Euro) per hour. Four 

participants were excluded from analyses: three because they did not follow instructions for the Stroop task, 

and one because they had very poor accuracy in the direction estimation task. Informed consent was given 

electronically at the beginning of the experiment. 

Design 

All of the participants took part in two conditions corresponding to Experiments 1A (Stroop condition) and 1B 

(No Stroop condition) of Chen & Bae (2024a) in randomized order in two separate sessions on separate days. 

16 and 17 participants started with No Stroop and Stroop conditions, respectively. The time between each 

session varied from 1 day to 10 days. 

Apparatus, stimuli, and procedure 

The study was built and conducted using PsychoPy 2023.2.3 / 2024.2.2 (Peirce et al., 2019). The stimuli were 

presented on ASUS VG248 LCD monitors (144 Hz, 1920×1080 pixels, 53 cm wide), with participants seated 

approximately 60 cm away. 

In line with the original study, we utilized a dual-task paradigm with two conditions. Each trial began with a 

1000 ms presentation of a fixation point (black circle, 0.25 degrees of visual angle, dva, in diameter; Figure 1), 

followed by a teardrop shape (2.5 dva) pointing in a random direction (chosen from a uniform distribution 

from 0 to 360 degrees), displayed for 200 ms. Participants were required to remember the direction in which it 

was pointing. After a 300 ms delay, they saw a Stroop stimulus—a word RED, GREEN, or BLUE (letter height 



4 

 

0.57 dva), shown in red, green, or blue color (RGB primaries at full contrast) for 200 ms. In the Stroop 

condition, participants responded to the Stroop stimulus by pressing the left, down, or right arrow keys for the 

colors red, green, or blue, respectively. The keys on the keyboard were marked with corresponding colored 

stickers. In the No Stroop condition, participants always had to press the down arrow key, regardless of the 

stimulus. Following this, the fixation point reappeared for another 1 s. The response time was limited to 1.2 s 

in total in the Stroop task (including the Stroop stimulus presentation time). If the response time for the 

Stroop stimulus exceeded 1.2 s, the message SLOW (white letters, 0.57 dva in height) was presented for 500 

ms. 

Finally, a black circle (4.3 dva in diameter) and a mouse cursor appeared, indicating that participants needed 

to report the orientation of the teardrop shape they had seen earlier. Upon the first mouse movement, a 

teardrop-shaped probe, always oriented toward the mouse cursor, reappeared. Participants were required to 

align the probe as accurately as possible to match the orientation of the stimulus and press the left mouse 

button to submit their answer. To avoid accidental responses, the mouse cursor had to be outside the circle 

for the response to count. The cursor was repositioned to the center of the screen for each trial, and the 

response time was not limited. 

Each condition consisted of an instruction page followed by 15 practice trials. In both conditions, participants 

were asked to complete a set of 5 blocks, each consisting of 96 trials, with self-paced breaks in between. 

They received feedback about their performance (the average error in direction estimation) during the breaks. 

 

Figure 1: Task procedure. Participants had to remember the pointing direction of a teardrop-shaped stimulus. After a delay, they saw a 
Stroop stimulus—a word reading “RED,” “GREEN,” or “BLUE”—randomly colored in red, green, or blue. Participants were instructed to 
respond by pressing a keyboard key that matched the color of the word (Stroop condition) or to press the same key regardless of the 
stimulus (No Stroop condition) within a 1-second delay following the stimulus. They then saw a circle indicating that they should report the 
direction in which the teardrop shape was pointing using the mouse. Once the mouse started moving, the teardrop shape reappeared, 
following the direction of the mouse cursor. Participants indicated that they were done responding by pressing the left mouse button when 
the cursor was outside the response circle area. 

Data pre-processing 

Removing anisotropies in response errors 

We employed an approach described in Bergen et al. (2015) and further developed in the circhelp package 

(Chetverikov, 2023b) for use in R. This method is designed to mitigate attractive or repulsive biases towards 

cardinal directions, which are commonly observed in orientation and motion perception studies (Chetverikov 

& Jehee, 2023; Wei & Stocker, 2017) and can interact with serial biases (Bae, 2024). The goal is to enhance the 

signal-to-noise ratio in the data. While a detailed explanation is available in the package documentation, we 

will provide a brief summary here. 

For each participant in our datasets, we generated two sets of bins. These bins divide the trials into groups 

centered on cardinal and oblique directions, as either repulsion or attraction to cardinals can occur. 

Repulsion from cardinals may cause a discontinuity in the average error relative to the pointing direction. To 

address this, we split the data into bins centered on oblique orientations. Conversely, attraction to cardinals 

(or repulsion from obliques) might be better addressed by grouping data around cardinal directions. 



5 

 

For each set of bins (i.e., those centered on cardinals and those centered on obliques), we fitted a 4th-degree 

polynomial to the responses within each bin, using the distance to the bin center as the independent variable 

and the response error as the dependent variable. We further allowed the width of the response distribution 

to vary as a function of distance to the nearest cardinal direction. Responses outside the ±3×SD range were 

excluded from the fitting process but added back afterwards. The model with the best-fitting set of 

polynomials was then chosen to represent the biases for a given participant. The mean predicted error was 

subsequently removed from each response, and responses outside the predicted ±3×SE range were 

considered outliers and excluded from further analyses. 

Estimating serial biases 

We estimated serial biases as the asymmetry in response probability density towards or away from previous 

stimuli using the density_asymmetry function in the circhelp package in R (Chetverikov, 2023b). This 

approach is not sensitive to the magnitude of an error. Instead, it measures how likely it is to observe a shift in 

response concerning the previous stimulus. This makes it more robust and less sensitive to the differences in 

similarity between the items. For instance, when two items differ by 5 degrees, the bias measured as mean 

error can theoretically be only up to 5 degrees. However, when they differ by 40 degrees, the bias can also go 

up to 40 degrees, making the magnitude of bias difficult to compare. 

The details of the approach are provided in the package documentation. Briefly, the sign of response errors is 

adjusted so that positive errors correspond to errors toward previous stimuli, while negative errors 

correspond to a bias away from them. Then, a probability density is estimated for errors in each condition 

(e.g., Stroop or No Stroop), and its asymmetry is computed by subtracting the probability density of negative 

errors from that of positive errors. The asymmetry is then normalized by the sum of the densities for positive 

and negative errors and multiplied by 100 to express it as a percentage. A 100% bias indicates that all errors 

were made toward previous stimuli, while -100% indicates that all errors were made away from previous 

stimuli. In the case of continuous variables, such as the dissimilarity between the previous and the current 

stimulus, a rolling Gaussian kernel is used to obtain a continuous estimate of the asymmetry. 

For the sake of completeness and to match the analyses in the original Chen & Bae (2024a) paper, we also 

present the results using the mean biases in Figure S2. Confidence intervals were estimated using the superb 

package in R, which implements the necessary adjustments for repeated measures designs (Cousineau et 

al., 2021). 

Results 

Stroop task performance 

We first analyzed the performance in the Stroop task to ensure that participants paid attention to it and that it 

had the intended distracting effect. As expected, performance was significantly better in the Stroop condition 

when the color and the word were congruent, both in terms of response times (congruent vs. incongruent: M = 

0.62 [0.60, 0.65] vs. M = 0.66 [0.63, 0.68], t(32.0) = 6.25, p < .001; here and later we report 95% confidence 

intervals in square brackets) and accuracy (M = 92.67 [90.41, 94.73] vs. M = 91.20 [88.49, 93.55], t(32.0) = -

2.59, p = .014; see also Figure S1). In the No Stroop condition, trial congruence did not affect response times 

(M = 0.38 [0.31, 0.45] vs. M = 0.38 [0.31, 0.45], t(31.0) = 0.28, p = .779) or accuracy (M = 34.44 [31.53, 38.78] 

vs. M = 30.85 [28.51, 32.53], t(31.0) = -1.22, p = .231),  
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indicating that participants ignored the Stroop stimulus in this condition as intended. Note that the difference 

in response times between the Stroop and No Stroop conditions did not affect the delay between the 

orientation stimuli and responses, as the response interval duration in the Stroop task was fixed. Additionally, 

there were no significant differences in the number of trials with responses that were not given in time (Stroop 

vs. No Stroop: M = 0.03 [0.02, 0.05] vs. M = 0.04 [0.02, 0.06], t(32.0) = -0.58, p = .565), suggesting that the 

presence of ‘too slow’ feedback cannot explain the potential differences between the conditions. 

 

Figure 2: Serial biases in responses. A Observers show positive (attractive) biases in the Stroop condition and negative (repulsive) biases in 
the No Stroop condition. Large dots and bars show means and 95% within-subject confidence intervals for each condition. Small dots show 
the data from individual subjects, with lines connecting the results from the same observer. Gray regions show the probability density of 
observers’ mean biases. B Biases are strongly correlated between conditions. Each dot shows the data for a single participant. The solid line 
shows the fitted linear regression prediction, with the 95% confidence interval as the shaded region. С Response bias as a function of 
similarity between the current and the previous trial. Thin lines show the data from individual participants. Thick lines and shaded regions 
show the average data and the associated 95% confidence intervals. 
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Performance in the direction estimation task 

We first looked at the average error in observers’ responses. As expected, the performance was worse when 

the observers had to engage in the Stroop task, again confirming that the Stroop task interfered with the main 

task (M = 8.82 [7.86, 9.84] vs. M = 7.04 [6.38, 7.87], t(32.0) = 4.15, p < .001, d = 0.72). Observers also 

responded faster in the Stroop compared to the No Stroop condition (M = 0.88 [0.82, 0.95] vs. M = 0.96 [0.89, 

1.04], t(32.0) = -3.35, p = .002, d = 0.58), potentially reflecting differences in the precision of direction 

representations. 

Do observers show repulsive biases, and do these biases switch to attraction when they engage in an 

additional task? Turning to the main question of our analyses, we found that the response bias was repulsive 

in the case of the No Stroop condition (M = -1.61 [-2.76, -0.45]) and attractive in the case of the Stroop 

condition (M = 1.90 [0.75, 3.06]), with a significant difference between the two (t(32.0) = 4.39, p < .001). An 

additional analysis including the order of conditions showed no significant order effects, F(1, 31) = 0.54, p = 

.468, �2
G = .01, nor the interaction between the order and condition, F(1, 31) = 1.01, p = .323, �2

G < .01. 

Interestingly, the average bias for each participant was strongly correlated between conditions, r(31) = 0.70, p 

< .001 (Figure 2B), suggesting common mechanisms for biases in the two conditions. 

We then analyzed the magnitude of the bias as a function of dissimilarity between the stimuli direction on the 

current and the previous trial. As shown in Figure 2C, the observers were biased towards the previous stimuli 

in the Stroop condition for a wide range of dissimilarity values (Student’s t-tests at individual dissimilarity 

steps were significant at p < .05 level from 1 to 35 deg.). In contrast, in the No Stroop condition, the bias was 

mostly repulsive (t-tests significant from 26 to 87 deg.). 

In a control analysis, we confirmed that the attractive biases are not caused by the swap errors, that is, that 

observers do not simply report the previous target. We found instead that the biases stem predominantly 

from small errors irrespective of the relative direction of the previous target, which is inconsistent with the 

swap errors explanation (Figure S3). 

 

Figure 3: Within-trial response bias as a function of time before the final response and dissimilarity between the current and the previous 
stimuli. Colors show the bias direction. Dashed lines show the boundaries of significant (based on a t-test p < .05) clusters of repulsive and 
attractive biases with crosses indicating the points with strongest biases. Note that for No Stroop condition, only repulsive bias cluster is 
present. 
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Response trajectories 

Following Chen & Bae (2024a), we further analyzed how the response trajectories develop over time (see 

Figure S4 for example response trajectories). To do so, we estimated bias as a function of time to response 

(with a smoothing Gaussian kernel, SD = 120 ms) and dissimilarity (Gaussian kernel, SD = 20°) on a 90 ⨯ 90 

points grid. We included only the time points (frames) where each observer had at least 20 trials, resulting in a 

selection of time points up until 817 ms before the response. We then tested for biases at each point at the 

time – dissimilarity space using a t-test with p < .05 threshold. The results show that the bias was repulsive in 

both conditions and only later became attractive in the Stroop condition (Figure 3). The strongest repulsion 

was observed at -771 ms and 94° (t(32) = -15.97, p < .001) for the Stroop condition and at -817 ms and 67° 

(t(32) = -17.36, p < .001) for the No Stroop condition. Significant attraction was observed only for the Stroop 

condition, with the strongest effect at -1 ms and 1° (t(32) = 2.71, p = .011). In sum, responses in both 

conditions indicated repulsion during response execution, peaking at intermediate dissimilarity between the 

current and the previous item that later switched to attraction in the Stroop condition, peaking at low 

dissimilarity. 

Biases at the start of the response period 

We then asked whether the repulsive response trajectories actually indicate a switch in the bias sign from 

repulsion to attraction in the Stroop condition during the response execution. The previous analysis followed 

the approach taken by Chen & Bae (2024a) by looking at times leading to response. However, observers 

decide themselves how much time they want to spend responding, which means that in this response-locked 

analysis, the beginning of a trial is missing for long trials (above 817 ms) and varies in time for other trials. This 

makes it difficult to infer the initial direction of a bias for a given condition. 

We thus analyzed the bias at the first frame as a function of the bias at the final frame for a given trial. Even 

though the mouse cursor was hidden before the trial start and repositioned at the center of the display when a 

trial began, observers could initiate the mouse movement in advance. As mouse position  

 

Figure 4: Response bias at the start of a response depends on the condition and predicts the final bias. A: Observers are more likely to begin 
with an attractive bias in the Stroop condition. Large dots and bars represent the means and 95% within-subject confidence intervals for each 
condition. Small dots show the data from individual subjects, with lines connecting the results from the same observer. Gray regions show 
the probability density of observers’ mean biases. B: Data from an example observer show the correlation between biases at the first and last 
time points within a trial. Each dot is a single response. Responses that end with an attractive bias are more likely to start with an attractive 
bias, and the same is true for responses that end with a repulsive bias. 
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is polled independently of what is shown on a screen (and with a higher frequency), the first recorded 

coordinate does not necessarily have to be at zero. We reasoned that if observers’ representations are initially 

repulsed by or attracted to the previous item, we would observe this effect at the start of a response. If the 

bias switches to attraction mid-response, then the sign of the final response should not matter; all responses 

would begin with repulsion, or no bias would be observed if the noise at the initial time points is too high. 

We found instead that the initial response biases were more likely to be attractive than repulsive when the 

trial ended with an attractive bias in the Stroop condition (M = 0.22 [0.11, 0.32], t(32.0) = 3.91, p < .001 with 

sign coded as +1 for attractive and -1 for repulsive). The opposite was true at the tendency level in the No 

Stroop condition when the trial ended with a repulsive bias (M = -0.12 [-0.24, 0.01], t(32.0) = -1.86, p = .072). 

No significant differences were found when the trial ended with a repulsive bias in the Stroop condition (M = 

0.01 [-0.10, 0.13], t(32.0) = 0.25, p = .805), or when it ended with an attractive bias in the No Stroop condition 

(M = 0.04 [-0.09, 0.16], t(32.0) = 0.61, p = .545). In other words, the condition had an effect already during the 

first moment in response trajectory with significantly higher chance of a positive bias in the Stroop condition 

(t(32.0) = 3.39, p = .002, Figure 4A; see also Figure S5). Furthermore, a generalized mixed model analysis 

showed that the sign of the bias at the first moment predicted the sign of the bias at the last moment in 

response (see example participant in Figure 4B; Z = 9.99, p < .001, random slope and intercept effects are 

included in the model). The attractive bias during the response initiation in the trials ending with attractive 

bias was short-lived: already by the second frame, the majority of these trials (42.97%) showed repulsive bias. 

Together these results suggest that the extra task affects response biases already during the response 

initiation. 

Response times as a function of similarity between the items 

Finally, we analyzed how the similarity between the items in the current and previous trials affects response 

times in the direction estimation task. We used a Bayesian hierarchical regression model with participants 

included as a grouping factor and fixed and random effects for dissimilarity and condition. The model showed 

that response times decreased as dissimilarity between the current and previous targets increased (b = -0.88, 

95% HPDI = [-1.07, -0.68] ms per degree of dissimilarity; Figure 5). There was also a main effect of condition (b 

= 66.42, 95% HPDI = [17.20, 116.09]) but no interaction effect (b = 0.16, 95% HPDI = [-0.03, 0.33]). 

Figure 5: Response time (RT) in the pointing direction estimation task as a function of the dissimilarity between the current and previous 

targets and condition. Points show the mean RT for dissimilarity binned in 20 deg. bins with 95% confidence intervals shown with vertical bars. 

Dashed lines show the average predicted by a Bayesian hierarchical regression model with shaded regions indicating 95% quantile-based 

credible intervals. 
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Discussion 

We aimed to replicate three surprising findings recently reported by Chen & Bae (2024a): (1) the overall 

repulsive serial bias in a pointing direction estimation task that (2) switches to attraction when an extra task is 

introduced, despite (3) the response trajectory showing strong repulsion in the course of decision-making 

irrespective of the extra task present. Our results show support for all three, despite minor differences in the 

design and analytic approach, suggesting the robustness of the original findings. However, we also (4) find 

strong and stable individual differences in the bias direction and magnitude. We further show (5) that 

response trajectories are more likely to start with an attractive bias in the Stroop condition and (6) that the 

initial bias at the start of the response predicts the final response bias. Finally, we also replicated (7) the 

relationship between response times and the similarity between the current and the previous target.  

What drives repulsive biases in this task? 

Unlike many other tasks showing attractive serial biases in perceptual decision-making (Cicchini et al., 2024; 

Manassi et al., 2023; Pascucci et al., 2023), this task shows repulsive serial biases. This is not the only known 

case of repulsive serial biases, but the other studies show repulsion from items that are unattended or are not 

reported (Ceylan & Pascucci, 2023; Fischer & Whitney, 2014; Pascucci et al., 2019; Pascucci & Plomp, 2021). 

Here, in contrast, the repulsive bias is shown in a stimulus-report paradigm, similar to ‘standard’ serial 

dependence conditions. While this repulsion was shown using the same task in several other papers by Bae 

and colleagues (Bae & Luck, 2017, 2019; Bansal et al., 2023; Chen & Bae, 2024b), to the best of our 

knowledge, there has not been a discussion of what causes this discrepancy with other paradigms. 

Repulsive serial biases could hypothetically reflect a combination of two methodological aspects of the task: 

its reliance on spatial memory and a short delay between the stimulus and the response. While we describe 

the remembered visual feature as ‘pointing direction’ (and Chen & Bae (2024a) describe it as ‘orientation’), it 

can as well be treated as a spatial memory task because participants can remember the point where the 

shape is pointing. Serial biases are usually also attractive for spatial memory tasks (Barbosa et al., 2020; Luo 

et al., 2022; Manassi et al., 2018; Stein et al., 2020), yet Bliss et al. (2017) and Stein et al. (2020) reported that 

serial biases for locations are repulsive with immediate response but become attractive with longer delays. 

Wang et al. (2024) further recently found repulsive biases in a task where observers had to quickly move the 

cursor towards a target location. Similarly, Bansal et al. (2023) used the same task as we employed here with 

varying delays and found a repulsive bias with zero delay and attractive biases with longer delays. Note that 

this effect of delay might be specific to this particular type of task. Other tasks, such as orientation reports 

(Fritsche et al., 2017), found attraction also with very short (300 ms) delays, and the seminal study by Fischer 

& Whitney (2014) used 1250 ms delays comparable to the present study. The only exception with attractive 

serial dependence for spatial tasks without a response delay comes from Manassi et al. (2018), where 

particularly low contrast stimuli were used. The same study did not find significant repulsion or attraction 

with medium contrast stimuli. Finally, while preparing this manuscript, we have also become aware of 

another preprint by Chen & Bae (2024b) that showed attractive biases when the same task as employed here 

but the spatial uncertainty was introduced (i.e., stimuli appeared in different locations). Overall, however, the 

existing papers seem to suggest that a short response delay in spatial memory tasks might result in repulsive 

biases. 

Interestingly, we observe considerable individual differences in the direction of biases. While on average the 

bias was repulsive in the No Stroop condition and attractive in the Stroop condition, a significant number of 

observers exhibited attractive (N = 11) or repulsive (N = 11) biases in both conditions. This is more than the 

number of observers for whom the biases actually switched sign (N = 9). And overall, the bias magnitude and 

direction were significantly correlated between the conditions. All this suggests that the bias direction should 

be treated more as a continuum rather than strictly attractive or repulsive. At the same time, the ~60% 
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majority of participants in the No Stroop condition did show a repulsive bias, in contrast to ~23% of observers 

showing repulsion in typical orientation tasks (Manassi & Whitney, 2024). So, we argue that the question of 

why the biases in this type of task are repulsive is still puzzling even though individual differences are present. 

Our findings suggest that observers’ responses are already biased at the start of the response. Responses 

that end with an attractive bias are more likely to begin with an attractive bias, while those that end with a 

repulsive bias are more likely to start with a repulsive bias. Furthermore, the bias in the Stroop condition was 

significantly more positive than in the No Stroop condition during this first frame. This occurs despite the 

predominantly repulsive biases observed during the response that are seen irrespective of the condition and 

the final response bias. Note that Chen and Bae (2024a, Figure S7) report mostly repulsive biases when the 

response was initiated (cf. our Figure S5). In a different study using the same task but with the spatial 

uncertainty (i.e., varying location of the stimulus) instead of the Stroop task, Chen & Bae (2024b) also reports 

repulsive initial biases. Interestingly, in the most recent version of their preprint, Chen and Bae (2024b) also 

notice the difference in the initial bias between conditions and the correlation between the initial and the final 

bias, however, they analyze it in terms of magnitude of the bias rather than the consistency in the sign. The 

difference in the results between the current study and the work of Chen and Bae (2024a) is unlikely to be 

driven by differences in analytic approaches as we observed the same results using the raw data and the 

mean error as a measure of bias (Figure S6). Although the initial attractive bias in our data is evident only in 

the first frame, its correlation with the final bias and the differences between the conditions suggest that it is 

not an artifact. We do not have a clear explanation of what prompts the divergence with the original study in 

terms of the sign of the initial bias, but note that the angle of the trajectory is very noisy at the start of the 

response (i.e., given that it is close to the point of origin, one pixel shift in cartesian coordinates would mean a 

large change in angle). Furthermore, technical aspects (the type of mouse used or the way its coordinates are 

polled by the experimental software) might potentially be important in determining the initial bias.  

These initial bias results complicate the task of pinpointing the origins of the repulsive and attractive biases. 

However, while Chen & Bae (2024a) suggested that “response trajectories started from the repulsion,” our 

additional analyses indicate that this is not the case. Instead, both repulsion and attraction in the response 

bias trajectories appear to occur both before and during the response. 

Repulsive and attractive serial biases from the normative perspective 

What do the results mean for the theory of serial dependence? While “there is no shortage of modelling work 

on serial dependence” (Manassi & Whitney, 2024, p. 362), we focus here on normative models that explain 

serial dependence as a byproduct of behavior that is optimal for a given task. This approach is beneficial 

because the constraints imposed by optimality principles reduce the flexibility of such models and allow for 

an explanation of behavior, in contrast to descriptive models that may provide only a description without an 

explanation (Geurts et al., 2018). 

Most prominent among these are Bayesian models suggesting that observers integrate information from 

previous stimuli with current ones (Cicchini et al., 2018; Cicchini et al., 2024; Fritsche et al., 2020; Kalm & 

Norris, 2018; van Bergen & Jehee, 2019). This behavior is optimal under the ecologically valid assumption that 

most objects change relatively little over time. The repulsive biases pose a challenge for a purely Bayesian 

model, as information integration can only lead to attractive biases. However, Bayesian models can explain 

the strengthening of the attractive bias in the Stroop condition. In this framework, introducing an additional 

task might be treated as extra noise added to the computations. For the Bayesian model, this would mean a 

stronger attraction to previous items, assuming that the extra noise affects the representation of the current 

item (‘likelihood’ in Bayesian terms) more than the memory of the previous one (‘prior’). In summary, the 

Bayesian model can account for the differences between the Stroop and No Stroop conditions, even though it 
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cannot explain why the biases are repulsive in the No Stroop condition or the observed repulsion in the 

analysis of response trajectories. 

The repulsion biases and their transition to attraction can be explained by assuming that repulsive and 

attractive biases coexist independently. In particular, Fritsche et al. (2020) combined a Bayesian model with 

separate changes related to the sensory encoding of visual stimuli using the ‘efficient coding’ approach (e.g., 

Wei & Stocker, 2015). According to this model, the visual system reallocates sensory processing capacities to 

accurately represent new stimuli that match previous inputs. This can lead to repulsive biases when new 

stimuli do not match what was seen before. In the context of the current study, the efficient coding aspect 

may explain why the observed response trajectories are repulsive and why an overall repulsive bias is noted in 

the absence of a secondary task. 

Notably, this efficient Bayesian observer model assumes that the efficient coding component is somewhat 

separate from the Bayesian component. This separation theoretically allows the model to account for any 

bias pattern, but it simultaneously reduces its predictive power. If the model is made more stringent by 

reintroducing the link between its components, its ability to explain the data is significantly diminished 

(Fritsche et al., 2020). Additionally, while efficient coding is meant to occur during stimulus encoding, as 

indicated by its name, the results here suggest that repulsion also occurs during the actual report. It is 

possible that stimuli are initially encoded with even stronger repulsion, and what is observed in the response 

trajectories analysis is merely the Bayesian component exerting its influence. However, we have also 

observed that responses leading to a positive bias are likely to start with a positive bias, raising questions 

about this explanation. 

Wang et al. (2024) suggested that repulsive serial biases are linked particularly to efficient coding of a motor 

plan. While this study does not allow to disentangle motor planning from perception, it is unclear how this 

explanation would explain the difference between the conditions, as the motor component of the task stays 

intact. Furthermore, this proposal disagrees with previous studies suggesting that it is actually the stimulus 

that creates repulsion while responses create attraction (e.g., Sadil et al., 2024; Sheehan & Serences, 2023). 

In summary, the efficient Bayesian observer model can account for both repulsive and attractive biases, but 

the loose connection between the efficient and Bayesian components undermines its appeal from a 

normative perspective, and the data appear to contradict the notion of repulsion occurring only during 

encoding. 

Alternatively, the repulsive biases and the switch to attraction can be explained by the Demixing Model 

(Chetverikov, 2023a). In brief, the model suggests that stimuli existing close in time or space (here, the stimuli 

from the current and previous trials) create a mixture of neural signals that need to be separated, or 

‘demixed,’ to estimate the properties of the stimuli. The model describes an optimal solution for this problem 

and shows that this solution results in biased estimates. Crucially, the direction and magnitude of the biases 

depend on the amount of noise in the signals and the distribution of that noise across response-related (e.g., 

pointing direction) and stimulus-identifying (e.g., time) dimensions. 

The noise in the stimulus-identifying dimension might be particularly relevant for understanding the results 

described above, namely, the repulsion and its switch to attraction with increased delays or when an extra 

task is introduced. The model predicts that as the overlap across this dimension increases, the biases 

become more attractive. Importantly, this attraction is not driven by swap errors stemming instead by partial 

attribution of sensory signals coming from one stimulus to another. With short report delays, the current and 

previous stimuli are easily distinguishable. As the time before the report increases, the amount of noise due 

to decay or interference in memory increases, leading to a decrease in the signal-to-noise ratio for the signals 

identifying which stimulus was actually the last one. This could lead to a switch from repulsion to attraction 

with increasing response delays.  
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In a similar fashion, the Demixing Model can also explain the stronger attraction in the Stroop condition 

compared to the No Stroop condition. Additional noise introduced by the Stroop task could lead to higher 

confusability of the two items on the identifying dimension, resulting in a stronger attractive bias. Finally, the 

same explanation could be applied to the recent findings of a shift towards attraction when spatial 

uncertainty is introduced (Chen & Bae, 2024b). In sum, this model would ascribe the repulsion to observers’ 

ability to discriminate the signals related to the current and previous stimuli, which might deteriorate in the 

presence of delays or an extra task, leading to a shift toward attraction. 

The Demixing Model also predicts that the relative amount of noise for the two stimuli on the response 

dimension could affect the direction of the biases. In particular, a less noisy item is predicted to be attracted 

to a noisier one, while the latter would be repelled from the former (a prediction contrasting it with a Bayesian 

model typically predicting an opposite pattern). To illustrate, if you see two overlapping patterns of colored 

tiles, with one of them in mostly blue colors and another with blue to green spectra, the blue tiles are likely to 

be seen as a part of the blueish pattern, even though some of them originate from the blue-green one. Then 

this blue-green pattern will be seen as greener than it is – a repulsion away from the blue color. Chetverikov 

(2023a) speculated that this could explain attractive serial dependence effects, as a more recent item is likely 

to be a less noisy source of neural signals than the one further back in memory. This prediction, however, is 

relatively difficult to test. Firstly, the previous items are already encoded when the new one appears, and this 

dynamic is unaccounted for in the model. This also makes the model, in its current form, inapplicable for 

explaining the biases in response trajectories (although it could potentially be extended to predict the 

decision dynamics). Secondly, memory about previous reports further complicates matters. This makes 

estimating and testing the effects of relative noise levels difficult in the case of serial dependence. 

In summary, the dynamics of serial biases in the results reported by Chen & Bae (2024a) and replicated here can be 

explained by both the efficient Bayesian observer model, which assumes independent attractive and repulsive 

biases, and the Demixing Model, which views them as a result of a single process. However, explaining existing 

results is easy. A strong test of these models requires hypotheses about not yet observed data. Ideally, one would 

predict when repulsive or attractive biases should emerge based on model parameters, such as stimulus noise 

levels or between-item similarity. This underscores the need for further theoretical advancement in the field. 

What does the relationship between response times and similarity mean? 

While neither the Bayesian model nor the Demixing Model tackle response times in serial decisions directly, both 

can be linked to response times through uncertainty or noise in the underlying representations. The Bayesian 

model can be linked to response times by observing that the more uncertainty there is in the observer’s 

representation of a stimulus, the more difficult it is to distinguish between this and similar stimuli, thus leading to 

longer decisions. More formally, the Bayesian observer’s uncertainty can be shown to be inversely related to drift 

rates in the drift-diffusion models of response times for simple forced-choice decisions (Bitzer et al., 2014), 

although we are unaware of a formal analysis of this relationship for continuous decisions. For the Demixing Model, 

on the other hand, response times are related to the difficulty of separating the signals. For example, the 

expectation-maximization algorithm used to derive the optimal solutions for a given set of sensory observations in 

Chetverikov (2023a) will take longer time to converge when stimuli are more similar to each other. This is because 

there is more ambiguity about which signal is caused by which stimulus, requiring the algorithm to take smaller 

steps and converge more slowly. Both models are thus capable of explaining response times even though usually 

response times are not the main focus of analyses.  

Interestingly, the predictions by the Bayesian model and the Demixing Model about response times as a function of 

similarity between the items will be different. The Bayesian model predicts that posterior uncertainty will follow an 

inverted U-shaped curve as a function of similarity. The lowest uncertainty – and hence the fastest responses – will 

be predicted when stimuli on the current and the previous trial are identical. In contrast, the Demixing Model will 
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predict a decline in response times as stimuli become more dissimilar, as the underlying signals are then easier to 

disentangle. The two models thus predict contrasting patterns of results.  

Our data replicate previous results by Chen and Bae and shows that response times are slowest when stimuli are 

identical and decrease with the decrease in similarity. These results match the predictions of the Demixing Model 

but not the Baeysian model. Further studies might be needed to test the generality of this finding across different 

feature domains.  

Conclusions 

In summary, we were able to replicate the main findings of Chen & Bae (2024a), which showed repulsive 

biases in the delayed pointing direction estimation task and a shift to attraction with the addition of an extra 

task during the delay period. We also observed stable individual differences in bias direction and magnitude 

and demonstrated that attraction and repulsion enact their influences both before and during the response. 

These surprising findings cannot be explained by a pure Bayesian model of serial biases; however, they can 

be accounted for, with some caveats, by the Bayesian model combined with another process, such as 

efficient coding (Fritsche et al., 2020), or by the Demixing Model (Chetverikov, 2023a), which treats both 

attraction and repulsion as resulting from a single process. These models can also potentially explain the 

differences in response times, but they require further development to account for dynamical changes in bias 

magnitude and direction evident from analysis of response trajectories. Further studies are needed to provide 

a more rigorous test of the models and explain the mechanisms of serial biases in visual memory and 

perception. 
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Supplementary figures 

 

Figure S1: Response times and accuracy in the Stroop task. Points show group averages, bars show 95% confidence intervals. 
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Figure S2: Bias estimates using mean error instead of asymmetry in probability densities. This analysis replicates the findings in Figure 2 using 
the same approach to measuring bias as used by Chen & Bae (2024a). A Mean bias. Large dots and bars show means and 95% within-subject 
confidence intervals for each condition. Small dots show the data from individual subjects, with lines connecting the results from the same 
observer. Gray regions show the probability density of observers’ mean biases. B Biases are strongly (r(31) = 0.71, p < .001) correlated 
between conditions. Each dot shows the data for a single participant. The solid line shows the fitted linear regression prediction, with the 
95% confidence interval as the shaded region. С Response bias as a function of similarity between the current and the previous trial. Thin 
lines show the data from individual participants. Thick lines and shaded regions show the average data and the associated 95% confidence 
intervals. 
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Figure S3: Bias for errors with different magnitudes. In this analysis, we asked what types of errors lead to observed biases. We were 
particularly interested in whether swap errors can explain the attractive bias observed in the Stroop condition. We analyzed the asymmetry 
of error probabilities in the same way as in the main text, but with consideration for error magnitude. A. Two-dimensional analysis of bias 
(asymmetry in error probabilities) as a function of error magnitude and dissimilarity between the current and previous stimuli. Colors 
indicate the direction of bias (red - attractive, blue - repulsive). The dashed line marks the hypothetical location of swap errors. If attractive 
biases were observed due to swap errors, we would expect to see a stronger bias around the dashed lines. However, we observe biases for 
relatively small errors, regardless of dissimilarity. B. Analysis of bias for bins of trials with different dissimilarities, as indicated in the facet 
labels. The dashed lines correspond to the regions where errors match the bin range. If attractive biases were due to swap errors, we would 
expect to see positive peaks between the dashed lines in each panel. However, consistent with the results in A, we observe biases for 
relatively small errors across most bins in the Stroop condition. 

 



20 

 

 

Figure S4: Response (mouse) trajectories for two example trials. ��  - the current stimulus angle, ���� - the previous stimulus angle, � - the 
response angle. Dashed circle shows the response boundary. Observers had to move the mouse cursor outside of this circle to respond. Dots 
show positions of the mouse cursor at individual frames with their color indicating time since the appearance of the response cue. Dashed 
lines show the hypothetical zero-bias trajectory matching the stimulus. 
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Figure S5: Within-trial response bias as a function of time after the response initiation. Lines indicate the mean bias, shaded regions indicate 
95% confidence intervals. The data shows a positive bias in the very first time point of in the Stroop condition (t(32.0) = 2.94, p = .006) but 
not in No Stroop condition (t(32.0) = 1.06, p = .296; a comparison between conditions was also significant t(32.0) = 2.15, p = .039). 
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Figure S6: Analysis of the raw serial bias data on the first frame in the response trajectory. This analysis is done without any preprocessing 
(i.e., no removal of cardinal biases or outliers) and using the mean as measure of bias instead of density asymmetry. The results match 
Figure 4 with the Stroop condition showing significant attraction to the previous trial item. We also confirmed that the bias on the first frame 
predicts the final response bias when the raw data is analysed using a linear mixed model (B = 0.02, SE = 0.01, t(7.64) = 2.83, p = .023). 

 


